4730 Mark Scheme June 2010

1			For triangle with two of its sides marked
			0.8 x 10.5 and 0.8 x 8.5 (or 10.5 and 8.5)
		M1	or for using $I = \Delta mv$ in one direction.
	For included angle marked α or for $0.8(10.5 - 8.5\cos\alpha) = 4\cos\beta$ For opposite side marked 4/0.8 (or 4) or for	A1	Allow B1 for omission of 0.8
	$-0.8 \times 8.5 \sin \alpha = 4 \sin \beta$	A1	Allow B1 for omission of 0.8 For using the cosine rule or for eliminating
	$\begin{vmatrix} 8.4^2 + 6.8^2 - 2x8.4x6.8 \cos \alpha = 4^2 \\ \alpha = 28.1^{\circ} \end{vmatrix}$	M1 A1ft A1	β ft 0.8 mis-used or not used
		[6]	
2(i)	$[100a = 2aV_B]$ Vertical component at B is 50 N Vertical component at C is 150 N	M1 A1 A1 [3]	For taking moments about A for AB
(ii)		M1	For taking moments about B for BC (3 terms needed) or about A for the whole (4 terms needed)
	$100(0.5a) + (\sqrt{3} \text{ a})F = 150a \text{ or}$ $100a + 100(1.5a) = 150a + (\sqrt{3} \text{ a})F$ Frictional force is 57.7 N Direction is to the right	A1ft A1 B1 [4]	
3(i)	$ \begin{array}{l} u = 4 \\ v = 2 \end{array} $	B1 B1 [2]	
(ii)	mu = ma + mb (or $u = b - a$)	M1 A1	For using the principle of conservation of momentum or for using NEL with e = 1
	u = b - a (or $mu = ma + mb$) $a = 0$ and $b = 4ms^{-1}$	B1 A1ft	ft incorrect u
	Speed of A is 2ms ⁻¹ and direction at 90° to the wall Speed of B is 4ms ⁻¹ and direction parallel to	A1ft	ft incorrect v
	the wall	A1ft [6]	ft incorrect u
4(i)	$[0.25 \text{ dv/dt} = 3/50 - t^2/2400]$	M1	For using Newton's second law $(1^{st} \text{ or } 2^{nd} \text{ stage})$ For attempting to integrate (1^{st} stage) and using $v(0) = 0$ (may be implied by the
		M1	absence of $+ C_1$)
	$v = 12t/50 - t^3/1800$ [v(12) = 1.92]	A1 M1	For evaluating v when force is zero
	$[0.25 \text{ dv/dt} = t^2/2400 - 3/50 \rightarrow$		For using Newton's second law (2 nd stage)
	$v = t^3/1800 - 12t/50 + C_2$	M1	and integrating
	$[1.92 = 0.96 - 2.88 + C_2]$ $v = t^3/1800 - 12t/50 + 3.84$	M1 A1	For using $v(12) = 1.92$
	v = 171600 - 12030 + 3.64 $v(24) = 5.76 = 3 \times v(12)$	A1	AG
	. ,	[8]	

4730 Mark Scheme June 2010

	T = 4	1	T
(ii)	Sketch has $v(0) = 0$ and slope decreasing		
	(convex upwards) for $0 < t < 12$	B1	
	Sketch has slope increasing (concave		
	upwards) for $12 < t < 24$	B1	
	Sketch has v(t) continuous, single valued		
	and increasing (except possibly at $t = 12$)		
		B1	
	with $v(24)$ seen to be $> 2v(12)$		
		[3]	
5(i)	For using amplitude as a coefficient of a		
	relevant trigonometric function.	B1	
	For using the value of ω as a coefficient of t		
	in a relevant trigonometric function.	B1	
	$x_1 = 3\cos t \text{ and } x_2 = 4\cos 1.5t$	B1	
		[3]	
(ii)			For using distance travelled by P ₂ for
()		M1	$0 < t < 5\pi/3 \text{ is } 5A_2$
	Part distance is 20m	A1	
	Tart dibunico io Zoni	**1	For subtracting displacement of P ₂ when
	[20 (3.62)]	M1	
	[20 – (-3.62)]		t = 5.99 from part distance.
	Distance travelled by P ₂ is 23.6 m	A1	
	<u> </u>	[4]	
(iii)		M1	For differentiating x_1 and x_2
	$\dot{x}_1 = -3\sin t; \ \dot{x}_2 = -6\sin 1.5t$	A1	
			For evaluating when $t = 5.99$ (must use
		M1	radians)
	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	
	$v_1 = 0.807$, $v_2 = -2.33$, opposite directions	[4]	
	Alternative for (iii):		
			For using $v^2 = n^2(a^2 - x^2)$ (must use radians
		M1	to find values of x)
	$v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$	A1	
	$[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$	111	For using the idea that v starts –ve and
	$4\pi/3 < 5.99 < 2\pi \implies v_2 < 0$	M1	changes sign at intervals of T/2 s
			changes sign at intervals of 1/2 s
(*)	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	
6(i)	PE loss at lowest allowable point = 25W	B1	D
		1	For using EE = $\lambda x^2/(2L)$; may be scored in
		M1	(i) or in (ii)
	EE gain = $32000x5^2/(2x20)$	A1	
			For equating PE loss and EE gain and
	[25W = 20000]	M1	attempting to solve for W
	Value of W is 800	A1	
		[5]	
(ii)	[800 = 32000 x/20]	M1	For using $W = \lambda x/L$ at max speed
()	[222 2200.1.20]		For using the principle of conservation of
		M1	energy (3 terms required)
	½ (800/9.8)v ²	1711	chorgy (5 terms required)
		Λ 1	
	$= 800 \times 20.5 - 32000 \times 0.5^{2} / (2 \times 20)$	A1	
	Maximum speed is 19.9ms ⁻¹	A1	
		[4]	<u> </u>
(iii)			For applying Newton's second law to
		M1	jumper at lowest point (3 terms needed)
	$(800) \ddot{x}/g = 800 - 32000 \text{ x } 5/20$	A1	
	Max. deceleration is 88.2 ms ⁻²	A1	
		[3]	
	II.		,

4730 Mark Scheme June 2010

7(i)			For using the principle of conservation of
, (1)	$[\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m } 6^2 = \text{mg}(0.7)]$	M1	energy for P (3 terms needed)
	Speed of P before collision is 7.05ms ⁻¹	A1	energy for the common moderatory
	Coefficient of restitution is 0.695	B1ft	ft 4.9 ÷ speed of P before collision
		[3]	speed of 1 corote company
(ii)			For using the principle of conservation of
,	$[\frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ m } 4.9^2 - \text{mg} 0.7(1 - \cos \theta)]$	M1	energy for Q
	$v^2 = 3.43(3 + 4\cos\theta)$	A1	Accept any correct form
	V = 3.13(3 + 1 cost)		For using Newton's second law radially
		M1	with $a_r = v^2/r$
	$T - mgcos \theta = mv^2/0.7$	A1	With a _f = V/I
	$[T - mg.8\cos\theta = mv/o.7]$ $[T - mg.8\cos\theta = m3.43(3 + 4\cos\theta)/0.7]$	M1	For substituting for v ²
		A1	AG
	Tension is $14.7\text{m}(1 + 2\cos\theta)\text{N}$	[6]	NO
(iii)	$T = 0 \rightarrow \theta = 120^{\circ}$	B1	
(111)	1 - 0 7 0 - 120	D1	For using $a_r = -g\cos\theta$
			$\{ \text{or } 3.43(3 + 4\cos\theta)/0.7 \}$
		M1	or $a_t = -g\sin\theta$
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ or	1,11	or $a_t = -g \sin \theta$
	transverse acceleration is (\pm) 8.49 ms ⁻¹	A1	
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ and		
	transverse acceleration is (\pm) 8.49 ms ⁻¹	B1	
		[4]	
			SR for candidates with a sin/cos mix in the
			work for M1 A1 B1 immediately above.
			(max. 1/3)
			Radial acceleration is $(\pm)8.49 \text{ ms}^{-1}$ and
			transverse acceleration is $(\pm)4.9 \text{ ms}^{-1}$ B1
(iv)	$[V^2 = 3.43\{3 + 4(-0.5)\} \times 0.5^2 \text{ or}$		
	$V^2 = (-g\cos 120^{\circ} \times 0.7) \times \cos^2 60^{\circ}]$	M1	For using $V = v(120^{\circ}) \times \cos 60^{\circ}$
	$V^2 = 0.8575$	A1	AG
	$[mgH = \frac{1}{2}m(4.9^2 - 0.8575)]$ or		For using the principle of conservation of
	$mg(H - 1.05) = \frac{1}{2} m(3.43 - 1.05)$	M1	energy
	0.8575)]	A1	
	Greatest height is 1.18 m	[4]	